
International Journal of Multiphase Flow 35 (2009) 963–969
Contents lists available at ScienceDirect

International Journal of Multiphase Flow

journal homepage: www.elsevier .com/ locate / i jmulflow
Interaction between two spheres placed in tandem arrangement in steady
and pulsating flow

L. Prahl a, A. Jadoon b, J. Revstedt b,*

a Department of Mechanics, Royal Institute of Technology, SE-100 44 Stockholm, Sweden
b Fluid Mechanics/Energy Sciences, LTH, Lund University, SE-221 00 Lund, Sweden
a r t i c l e i n f o

Article history:
Received 12 August 2008
Received in revised form 1 May 2009
Accepted 3 May 2009
Available online 12 May 2009

Keywords:
Dual particles
Tandem formation
Interaction
Volume of solid (VOS)
0301-9322/$ - see front matter � 2009 Elsevier Ltd. A
doi:10.1016/j.ijmultiphaseflow.2009.05.001

* Corresponding author. Tel.: +46 46 222 4302; fax
E-mail address: johan.revstedt@energy.lth.se (J. Re
a b s t r a c t

The interaction among two spheres in tandem formation are studied for a Reynolds number of 300 using
both steady and pulsating inflow conditions. The purpose is to further investigate the force characteristics
as well as the shedding patterns of the two spheres as the separation distance is changed from 1.5 to 12
sphere diameters. The method used for the simulations is the volume of solid (VOS) method, an approach
based on the volume of fluid (VOF) method. Comparisons with other computational methods have shown
VOS to accurately resolve the flow field around solid spheres. The results show that the separation dis-
tance plays a significant role in changing the flow patterns and shedding frequencies at moderate sepa-
ration distances, whereas effect on drag is observed even at a separation distance of 12 diameters.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The interaction of particles at moderate Reynolds numbers has
various applications ranging from industrial fluidised beds, to bio-
reactors, to the combustion of aerosols. The understanding of the
behaviour and underlying theoretical concepts of these systems
is critical. Numerous studies have been carried out for flow around
a single spherical particle and the different transition modes the
flow undergoes with increasing Re, for example (Fornberg, 1988;
Johnson and Patel, 1999; Kim and Pearlstein, 1990; Lee, 2000). At
low Reynolds numbers in a uniform flow, the flow past a single
sphere is attached and steady. Taneda (1956) observed the forming
of steady axisymmetric vortex ring as the boundary layer sepa-
rated from the particle at a Reynolds number of approximately
24. More recent studies report this first transition to occur at
Re = 20 (Johnson and Patel, 1999). With an increase in Reynolds
number, the recirculation downstream of the sphere is extended
and becomes non-axisymmetric as the Reynolds number reaches
a value of 210–212 (Johnson and Patel, 1999; Natarajan and
Acrivos, 1993; Taneda, 1956; Tomboulides and Orszag, 2000).
However, the flow remains steady until a third transition mode oc-
curs, at which vortex ring stability is lost. The third transition has
been reported by Natarajan and Acrivos (1993) to occur at
Re = 277.5, where as Tomboulides and Orszag (2000) observed
the appearance of the third mode the interval 270 6 Re 6 285
and Johnson and Patel (1999) in the range 270 6 Re 6 280. The
ll rights reserved.
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vstedt).
flow is now unsteady however periodic. Averaged in time the flow
exhibits planar symmetry around the plane where the shedding
process is initiated. With the flow being periodic, a single dominat-
ing frequency corresponding to a Strouhal number (St) of 0.136 has
been observed at a Reynolds number of 300 by Johnson and Patel
(1999) and Tomboulides and Orszag (2000). As the Reynolds num-
ber is increased, Tomboulides and Orszag (2000) found that the
flow lost its planar symmetry and became chaotic for
300 6 Re 6 500. Sakamoto and Haniu (1990, 1995) reported this
transition to occur for Re > 420. However, Gushchin and Matyushin
(2006) observed the loss of planar symmetry at Re = 375. Mittal
et al. (2001) reported that the loss of strict planar symmetry in
the sphere wake at about Re = 360 is not immediately followed
by the appearance of statistically axisymmetric wake. Instead the
wake undergoes a transition to the mode where vortex loops are
formed with preferred orientations (Re = 500, 650). However, with
the increase in Re this preferred orientation diminishes and wake
approaches a statistically axisymmetric state (Re = 1000).

Relatively fewer studies have been carried out considering the
interaction among spheres especially in the unsteady periodic
(285 6 Re 6 380) and the chaotic regimes (Re > 380). The effect
of the presence of a secondary sphere placed at different separation
distances and angles with respect to reference sphere on drag and
lift forces, shedding frequencies and wake structures is still poorly
understood. The first experimental studies regarding spheres inter-
acting at low Reynolds number which were performed by Eveson
et al. (1959), Happel and Pfeffer (1960) and Rowe and Henwood
(1961). Happel and Pfeffer (1960) reported the increase in the ter-
minal velocity for two particles falling in tandem formation
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compared to an isolated particle. More recent works have extended
this to relatively large Reynolds number in order to examine the
dependency of wake structure, flow separation, shedding frequen-
cies and drag effects on inter-sphere distance and Reynolds num-
ber. However, the majority of these studies are focused on
spheres in side-by-side arrangement, e.g. Kim et al. (1993), Brydon
and Thompson (2001), Folkersma et al. (2000) and Schouveiler
et al. (2004). However, both tandem and side-by-side formation
have been investigated experimentally by Chen and Lu (1999)
and numerically by Tsuji et al. (2003). Liang et al. (1996) reported
the results for drag using four different spheres arrangements. Zou
et al. (2005) investigated the flow patterns and shedding frequen-
cies at different separation distances when studying wake struc-
ture interaction for dual spheres placed in tandem. In a recent
study Yoon and Yang (2007) investigated the interaction of a pair
of spheres a Re = 300 varying both the separation distance and
the angular position relative to the flow direction.

All the above mentioned studies point out the importance of the
separation distance and position of the secondary sphere which in
turn significantly affect drag, lift and the shedding patterns. For
spheres in tandem formation, as the gap between the sphere is de-
creased, the reference (upstream) particle undergoes an increase in
drag caused by the interaction of the high-pressure region in front
of the secondary (downstream) sphere with the low-pressure re-
gion behind the reference sphere resulting in a ‘slipstream effect’,
i.e. the secondary sphere experiences a smaller flow velocity that
leads to a larger drag force for leading particle. However, the drag
of the reference sphere is still smaller compared to the drag of a
single sphere. As the separation distance is increased, the drag
force gradually levels off to the value of an isolated sphere. The
parameter which is most significantly affecting the drag force for
tandem arrangement appears to be if the secondary sphere is posi-
tioned in the recirculation part of the wake of the reference sphere
or not Olsson and Fuchs, 1998; Zhu et al., 1994. Spheres positioned
in tandem are not subjected to any lift force for Reynolds number
less than 200, e.g. Prahl et al. (2007). For moderate Reynolds num-
ber (300), the wake behaves as steady and axisymmetric, steady
and plane symmetric and finally unsteady as separation distance
between two spheres is increased from 1.5 to 2.5D. At a gap of
3–4D, the wake undergoes a three-dimensional transition. Further
increasing the separation distance the wake will re-assume planar
symmetry (Zou et al., 2005).

The motivation for the present work is based on obtaining bet-
ter understanding of the phenomena occurring in the interaction of
spheres in the unsteady wake region. A major purpose of the pres-
ent study is to use the results in order to improve the Eulerian–
Lagrangian models for particle laden flows, so as to account for
the effects of non-colliding particle interactions on the force load-
ing. Hence, the results obtained here will be used to adjust the drag
and lift models currently used in Eulerian–Lagrangian models. In a
previous study (Prahl et al., 2007), we investigated particle interac-
tions in the stationary wake flow regime. The present work is an
extension towards higher Reynolds numbers and thereby entering
the unsteady wake regime. Both steady and time dependent inflow
conditions are used. The reason for including a time dependent
inflow is to be able to investigate how the wake and the forces
respond to flow unsteadiness.
2. Numerical method

The continuity and momentum equations governing an isother-
mal, incompressible flow of a Newtonian fluid are spatially discre-
tised using first and second order basic finite-difference schemes
on a staggered Cartesian grid. A single step defect correction meth-
od (Gullbrand et al., 2001) is used to improve the accuracy without
loosing any numerical stability to third order for convective terms
and fourth order for remaining terms. A second order fully implicit
scheme is used for temporally discretisation of the transient terms.
The resulting system of algebraic equations is solved using a multi-
grid method where the pressure–velocity coupling is done through
simultaneous update of dependent variables as the continuity
equation is relaxed (Fuchs and Zhao, 1984).

2.1. Volume of solid (VOS)

The volume of solid (VOS) method (Lörstad and Fuchs, 2001) is
used to describe complex surfaces on a Cartesian grid. It is derived
from the volume of fluid (VOF) approach in which the amount of
fluid and solid in each cell is defined. For reasons of simplicity
we now consider a two-dimensional flow over a flat fluid–fluid
interface. The velocity derivatives will in general have different
values on either side of the interface. However, the shear stress will
be equal on either side of the interface. In this two-dimensional
example the shear stress at the interface is then determined by

sxy ¼ lðkÞ @uðkÞ

@y
þ @v

ðkÞ

@x

� �
ð1Þ

where k ¼ 1;2 denotes the fluid. In the VOF approach one often as-
sumes a linear relationship between amount of each fluid in a cell
and the average viscosity of that cell (Rudman, 1998; Puckett
et al., 1997). Hence, the viscosity in a cell can be calculated from:

l ¼ alð1Þ þ ð1� aÞlð2Þ ð2Þ

where a is the phase variable representing the amount of fluid in
each cell, (0 6 a 6 1). Using the VOF method we may write the
shear stress as
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Combining Eqs. (1) and (2) the following expression for the dynamic
viscosity in a cell is obtained:

l ¼ 1
a

lð1Þ þ
1�a
lð2Þ

ð4Þ

which is the harmonic mean of the dynamic viscosity. Letting the
viscosity of the second fluid (i.e the solid) in Eq. (4) go to infinity
and assuming constant density a simple expression for the kine-
matic viscosity ratio ðdmÞ in a cells cut by the interface can be
formed.

dm ¼ m
mð1Þ
¼ l

lð2Þ
¼ 1

a
ð5Þ

Cells containing only solid phase will be blocked as there will be no
flow ða ¼ 0Þ in these cells. Thus no computation will be carried out
for these cells. Further details regarding the technique used to rep-
resent the constant shear stress can be found in Lörstad and Fuchs
(2001).

With the definition of viscosity ratio from Eq. (5), the governing
equations for an incompressible flow can, on a non-dimensional
form, be written as
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where ui is the velocity, p is the pressure and dm the viscosity ratio.
By integrating the momentum equations over a control volume

and then transforming the volume integral into a surface integral
using Gaussian theorem the following equation is obtained:
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where C represents the outer surface of a control volume, ni is the
unit vector normal to the surface and dm ¼ 1 on the boundary C. The
forces acting on the object is obtained by applying Eq. (8) on the
faces of the control volume.
3. Problem set-up

Two equally sized spheres with a diameter D are held fixed in a
rectangular domain while changing the relative position in tan-
dem between the spheres. For the dual sphere formations, the
leading sphere, named the ‘‘reference sphere”, is fixed at 10D
downstream of the inlet, while the position of the trailing sphere,
denoted the ‘‘secondary sphere”, is defined by the separation dis-
tance D0 using D0 ¼ 1:5;2;3;6;9;12D and D0 ¼ 1:5;2;3;4:5;6 for
the steady and pulsating inflow profiles, respectively (see Fig. 1).
The Reynolds numbers is 300 in all simulations. At the inlet, a uni-
form velocity profile, stationary as well as pulsating is applied. The
pulsating inflow is a periodic modulation of the uniform inlet
velocity, where the amplitude of the fluctuations is 0:1Uin, pulsat-
ing with Strouhal numbers ðStin ¼ fD=UinÞ of 0.1, 0.135 and
0:2: Stin ¼ 0:135 is chosen due to the fact that it is close to the nat-
ural frequency connected to Re = 300 whereas the other two fre-
quencies are tested in order to study the impact of a slight
change in frequency with respect to the natural frequency. A grid
resolution of h ¼ D=64 is used for all simulations with a domain
size of [32,32,64]D (Fig. 1). A study of the grid dependency can
be found in Electronic Annex 1 of the online version of this article.
The results are presented in terms of time averaged drag and lift
coefficients ðCD; CLÞ and in terms of the standard deviations of
the drag and lift coefficient fluctuations ðDCD;DCLÞ. These the
instantaneous force coefficients were sampled at every time step
and the statistics were calculated according to Eqs. (9) and (10)
over at least 150 time units after the flow had reached statistical
steady state, which corresponds to about 20 shedding periods at
a shedding frequency St = 0.135.
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The ‘‘̂�” denotes instantaneous values and N is the number of time
steps.
Fig. 1. The computational doma
4. Results

Simulations have been performed for both a single sphere and
dual spheres in tandem at a Reynolds number of 300.

Fig. 2a shows the mean drag coefficient for both spheres at stea-
dy inflow. The greatest drag reduction is found at a separation dis-
tance of D0 ¼ 3D. By further increasing the separation distance, the
drag levels off to that of a single sphere for separation distances
larger than 6D. The secondary sphere experiences a minimum drag
at D0 ¼ 1:5D that is slowly increasing as the separation distance is
increased. However, even at a separation distance of 12D, the drag
force is still only about 80% of that of a single sphere. Also added to
Fig. 2a are the results of Yoon and Yang (2007), and, as can be seen,
our results agree very well with theirs. It is worth noting that the
fluctuations of drag and lift for the reference sphere are signifi-
cantly smaller than for the single sphere case, whereas the drag
coefficient fluctuations on the secondary sphere is up to seven
times larger than that of the single sphere. The former is probably
caused by a phenomenon similar to the one found in previous
studies for dual particle formations in lower Reynolds number
flows (6200), (Olsson and Fuchs, 1998; Prahl et al., 2007), where
the inclusion of a secondary particle placed in the proximity of a
reference sphere will delay the development of the wake behind
the reference sphere. Hence, the presence of the secondary sphere
will both dampen and delay the vortex shedding on the reference
sphere. Regarding the latter, the increase in drag fluctuations for
the secondary sphere is caused by the vortex shedding on the ref-
erence sphere. At the shorter separation distances (2.5D and 3D)
we observe no shedding from the secondary sphere. Instead a
toroidal vortex is formed which is periodically disrupted by the
vortex shed by the reference sphere. At D0 ¼ 2:5D this disruption
occurs twice per shedding cycle, first due to collision with the ref-
erence sphere vortex and secondly by what appears to be a
‘‘suction” effect as the reference sphere vortex is passing. This
can be clearly seen in Electronic Annex 2 of the online version of
this article, showing a k2-visualisation of the vortex structures.
Considering a similar visualisation at D0 ¼ 3D (Electronic Annex
3) one can see the interaction of the vortices are somewhat differ-
ent. Here the toroidal vortex barely has time to reform before it is
hit by the reference sphere vortex. One can also observe an oscillat-
ing motion of the wake in the gap between the spheres. This leads
to an alternating shedding position which in turn results in the
zero mean lift noted in Fig. 2b. At D0 ¼ 6D shedding from both
spheres is observed and the interaction of these vortices creates
a fairly complex wake structure downstream of the secondary
sphere, as can be seen in Electronic Annex 4 of the online version
of this article.
in and coordinate system.



Fig. 2. The absolute value of mean CD (a) and the absolute value of mean CL (b) compared with the results of Yoon and Yang (2007) and the rms of the fluctuations thereof;
DCD (c), DCL (d) as a function of the separation distance for both the reference and the secondary sphere at Re = 300, for steady inflow.
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Considering the pulsating inflow conditions in Fig. 3a, the mean
drag shows a behaviour similar to that of the steady inflow condi-
tion case, However, the point of maximum drag reduction is
dependent on the frequency of the inflow velocity. As the fre-
quency is increased this point is moved upstream. For the second-
ary sphere, all cases show similar behaviour. The smallest
separation distance leads to the greatest drag reduction, a reduc-
tion that is decreasing as the separation distance is increased.
The case with Stin ¼ 0:135 is most similar to the steady inflow case,
whereas Stin ¼ 0:1 shows a similar trend as the former two but
with an enhanced drag reduction. Furthermore, one may also no-
tice the very large fluctuations in the drag, Fig. 3c, mostly originat-
ing from the fact that the inflow velocity varies periodically.

A decrease in mean lift coefficient (Fig. 2b from a value close to
that of a single sphere at D0 ¼ 2D to almost zero at D0 ¼ 3D is ob-
served for the reference sphere in the steady inflow case, which is
also noted by Yoon and Yang (2007). Further increasing the sepa-
ration distance, the mean lift coefficient again increases and ap-
proaches the single sphere value for D0 P 6D. A similar trend is
observed for the secondary sphere, however the values are some-
what lower except at D0 ¼ 3D. By comparing Figs. 2b and 3b it is
evident that the lift of the pulsating inflows is much lower than
for the steady case, especially at large separation distances. This
may be caused by the difference in shedding patterns, as the peri-
odicity of the natural shedding competes with the shedding of an
axisymmetric vortex, which in turn will decrease the asymmetry
in the wake and hence also the lift force. For a separation distance
of D0 ¼ 2D, relatively large lift values are observed, Fig. 3b. This is
probably due to the asymmetry in the shedding caused by the peri-
odicity of the inflow. Considering Figs. 2d and 3d, the lift fluctua-
tions of the reference sphere is to a greater extent affected by
the pulsating inflow for all separation distances compared to the
steady inflow case. For the secondary sphere, the lift fluctuations
are, in the pulsating inflow cases, less affected by the inflow condi-
tion. At short separation distances the lift fluctuations are larger for
the higher inflow frequency. However, beyond D0 ¼ 4:5D the situ-
ation is opposite.

Increasing the separation distance in steady inflow from 1.5D to
2D the wake transforms from steady axisymmetric to steady plane
symmetric. A further increase in separation distance to 2.5D results
in a unsteady plane symmetric flow. Up to D0 ¼ 2:5D our results
resemble the findings of Zou et al. (2005). However, for a separa-
tion distance of 3D Zou et al. (2005) observed a symmetry plane,
while our results indicate that the flow is statistically axisymmet-
ric at this separation distance. Further increasing the separation
distance to 6D, 9D and 12D leads to unsteady plane symmetric
behaviour of the flow. The frequencies for steady inflow are sum-
marised in Table 1 For the steady inflow case, both the reference



Fig. 3. Absolute value of mean CD (a), absolute value of mean CL (b) and the rms of the fluctuations thereof; DCD (c), DCL (d) as a function of the separation distance for both
the reference and the secondary sphere at Re = 300, for pulsating inflow ðStin ¼ 0:1, 0.135 and 0.2).
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and secondary sphere have a shedding frequency a Strouhal num-
ber of approximately 0.1 at separation distances of 2.5D and 3D.
For separation distances of 6D and above, both spheres have a
Strouhal number of 0.137, i.e. equivalent to that found for a single
sphere. However, with increasing separation distance, several har-
monics are detected as well as enhanced for the secondary sphere,
which is due to the vortex interaction discussed above and shown
in Electronic Annex 4. Referring to the discussion above on the vor-
tex interactions it can be concluded that for the unsteady wakes
the terms planar symmetric and axisymmetric are insufficient to
fully characterise the wakes. Therefore, to further characterise
the dynamics of the wake we use the components of the instanta-
Table 1
Comparison of the mean drag coefficient, drag coefficient fluctuations and Strouhal numbe
frequencies are shown in bold text.

D0 CDðRefÞ DCD St

1.5 0.645 – –
2 0.64 – –
2.5 0.621 0.0025 0.1, 0.2, 0.3
3 0.619 0.0007 0.1
6 0.669 0.0014 0.137, 0.26
9 0.669 0.0013 0.137,0.26
12 0.669 0.00128 0.137, 0.26
neous lift coefficient (CLx and CLy ). Four regimes can then be iden-
tified and we refer to these as: unidirectional (Fig. 4a) for which the
lift is varying in magnitude but the direction is always along a line;
cyclic for which both the direction and the magnitude of the lift
coefficient varies periodically; semi-chaotic (Fig. 4c) for which the
lift has a preferred direction but with a random fluctuation around
this direction, chaotic (Fig. 4d) for which the variation is random
and no preferred direction is present. These are summarised in
Table 2 for all cases. In all cases with steady inflow the wake shows
a unidirectional behaviour.

For the pulsating inflow the situation is slightly different. The
inflow frequency together with the separation distance determines
rs for spheres in tandem configuration at Re = 300, with steady inflow. The dominant

CDðsecÞ DCD St

0.103 – –
0.194 – –
0.267 0.0094 0.1, 0.2, 0.3
0.347 0.007 0.1, 0.3
0.473 0.017 0.137, 0.26, 0.39, 0.52
0.518 0.019 0.137, 0.26, 0.39, 0.52, 0.65
0.55 0.018 0.137, 0.26, 0.39, 0.52, 0.65, 0.78



Fig. 4. Four characteristic behaviour of CL found for spheres placed in a pulsating inflow. (a) Strict planar symmetric ðD0 ¼ 2D; Stin ¼ 0:2Þ, (b) ‘cyclic’ planar symmetric
ðD0 ¼ 1:5D; Stin ¼ 0:1Þ, (c) semi-chaotic ðD0 ¼ 4:5D; Stin ¼ 0:1Þ and (d) chaotic ðD0 ¼ 2D; Stin ¼ 0:1Þ.

Table 2
The flow character depending on inflow Strouhal number and separation distance.

St 1.5D 2D 3D 4.5D 6D

Steady N/A N/A Unidirectional No data Unidirectional
0.1 Cyclic Chaotic Semi-chaotic Semi-chaotic Semi-chaotic
0.135 Cyclic Cyclic Semi-chaotic Semi-chaotic Semi-chaotic
0.2 Cyclic Unidirectional Unidirectional Unidirectional Unidirectional
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whether the flow becomes axi- or plane symmetric as well as
which frequency will be dominating in the flow field. It should
be noted that although all these cases are are time dependent
due to the nature of the boundary conditions they are not neces-
sarily unsteady in the sense that vortex shedding will occur, as is
shown below. Particles placed 1.5D apart will independent of in-
flow frequency, have a lift behaviour corresponding to Fig. 4b.
Although the wake is stable, in the sense that there is no vortex
shedding present, as for the steady inflow case, there apparently
some asymmetry present which generates a variation in the direc-
tion of the lift. Hence, the force fluctuations are not only caused by
the temporal variation of the inflow velocity. Further increasing
the separation distance leads to a situation different situations
depending on inflow frequency. A general observation is that if
the inflow frequency is lower or equal to the single sphere shed-
ding frequency the wake becomes chaotic at some point where
after it is, to a certain extent, stabilised and transforms to a
semi-chaotic behaviour as the separation is increased. For the high
frequency inflow the wake will, after being cyclic at 1.5, adopt a
unidirectional behaviour similar to the steady inflow case.

Table 3 presents the Strouhal numbers of the lift force fluctua-
tions for both spheres for the pulsating inflows. A general trend for
the pulsating cases is that the frequency is locked-on to the inflow
frequency. This is most evident for the smallest separation dis-
tances ðD0 ¼ 1:5DÞ. The onset of vortex shedding is at D0 ¼ 2D,
where the axisymmetric vortex in the wake of the reference sphere
is periodically shed. As the vortex passes around the secondary
sphere, it is deformed into a hairpin vortex. Some tendency to form
a hairpin vortex already in the wake of the reference sphere is also
observed. This is probably the origin of the St = 0.126 observed for



Table 3
Comparison of Strouhal number for both spheres at Re = 300 placed in tandem
formation for inflow frequencies ðStinÞ of 0.1, 0.135 and 0.2. Inflow frequencies are
marked with bold phase in the Strouhal number column. The frequencies are
organised with the strongest frequency first.

D0 Stin Stref Stsec

0.1 0.1 0.1
1.5 0.135 0.135, 0.270 0.135, 0.270, 0.405

0.2 0.2, 0.4 0.2, 0.4, 0.6
0.1 0.030, 0.1, 0.126 0.1, 0.126, 0.2

2 0.135 0.136, 0.271 0.136, 0.271, 0.169
0.2 0.2 0.2, 0.4
0.1 0.1, 0.037, 0.139 0.1, 0.139

3 0.135 0.136, 0.093 0.138, 0.175, 0.127, 0.093
0.2 0.1, 0.2, 0.3 0.1, 0.2, 0.3
0.1 0.035, 0.1, 0.136 0.136, 0.1, 0.236, 0.2

4.5 0.135 0.036, 0.136 0.170, 0.136
0.2 0.1, 0.2 0.1, 0.2, 0.3, 0.5
0.1 0.1, 0.041, 0.139 0.139, 0.1, 0.24, 0.2, 0.278

6 0.135 0.034, 0.135, 0.1 0.169, 0.3, 0.1, 0.135
0.2 0.1, 0.2 0.1, 0.3, 0.2
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Stin ¼ 0:1. Moreover, for the reference sphere in this sphere config-
uration, D0 ¼ 2D and Stin ¼ 0:1, the most dominant frequency is
approximately 0.03. The same frequency is also found for the sec-
ondary sphere, although not as significant, implying that this is a
resonance phenomenon. Increasing the inflow Strouhal number
to 0.2, the shedding is locked-on to this frequency since the natural
shedding is slower and therefore has no time to develop. Further
increasing the separation distance will promote the wake develop-
ment of the reference sphere leading to a behaviour which resem-
bles that of a single sphere. The vortices shed from the reference
sphere will be distorted by the secondary sphere and interact with
its wake creating a fairly complex flow structure which is indicated
by the frequency content for D0 P 3D. It should be noted though,
that we do not observe any frequencies on the secondary sphere
that is not directly influenced by the upstream wake until separa-
tion distances of 4.5D and above.

5. Conclusions

The wake structures as well as the forces acting on a sphere are
influenced by the presence of a second sphere. At small separation dis-
tances and steady inflow, the wake is steady. As the distance is in-
creased vortex shedding appears first on the reference sphere. i In
terms of force coefficient fluctuations the variation is weaker on the
reference sphere compared to the case of a single sphere. For the sec-
ondary sphere the situation is the opposite. The fluctuations of both
lift and drag are substantially larger than for a single sphere, due to
the unsteadiness of the flow on this sphere. Also, the secondary sphere
has only a minor influence on the mean drag force of the reference
sphere. The secondary sphere though, experiences a substantial drag
reduction, especially at short separation distances, but even placed
12D downstream of the reference sphere the drag is reduced by 20%
compared to a single sphere. Introducing a periodic inflow further
adds to the complexity of the wake structures and changes the shed-
ding behaviour as well as the level of force fluctuations. However, the
mean drag is almost unaffected by this periodicity.
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